Deterministic Ethernet as Reliable Communication Infrastructure for Distributed Dependable VLSI Systems

2nd JST International Symposium on Dependable VLSI Systems
Tokyo, Japan, December 6-7, 2013

Wilfried Steiner, Corporate Scientist
wilfried.steiner@tttech.com
What They Have in Common …

Reliable Networks

Are a key element of a dependable system
Trend towards Advanced Driver Assistant Systems (ADAS)
Actuators

Necessary Actuators for Automated Driving

- Electronic Stability Control
- Hold management system
- Decelleration management

- Powertrain Coordination
- Shift-by-Wire
- Electric Power Steering

Steering Column
Accelerator Pedal
Drive Select
Steering
Damper
Shift-by-wire
NETWORK BECOMES MORE AND MORE IMPORTANT
Toolbox of Mechanisms

A comprehensive Toolbox of Mechanisms for Implementing Time and Safety Critical Communication systems

<table>
<thead>
<tr>
<th>Scheduled Traffic</th>
<th>Ultra low latency, Highly deterministic, QoS, Planning & Flexibility issues, Adequate for most challenging applications.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexible Automotive / Industrial Control Traffic Class</td>
<td>Low latency, QoS, Flexible, Goal Adequate for the majority of control applications. Ongoing discussion in 802.1TSN: BLS? Peristaltic? Urgency based? Per ingress shaping?</td>
</tr>
<tr>
<td>Seamless Redundancy</td>
<td>Safety critical control.</td>
</tr>
<tr>
<td>Ingress Policing</td>
<td>Safety critical, Fault containment, Single point of failure.</td>
</tr>
<tr>
<td>Fault Tolerant Clock Sync</td>
<td>Safety critical, Fault containment.</td>
</tr>
<tr>
<td>Adequate support for reservations</td>
<td>Automotive requirements currently under discussion (=> AAA2C)</td>
</tr>
</tbody>
</table>

Markus Jochim, General Motors Research
IEEE 802.1 Plenary Session
July 14 - 19, 2013 – Geneva, Switzerland

General Industrial Trend towards Converged Networks

Closed World Communication

- Performance guarantees: real-time, dependability, safety
- Standards: ARINC 664, ARINC 429, TTP, MOST, FlexRay, CAN, LIN, ...
- Applications: Flight control, powertrain, chassis, passive and active safety, ..
- Validation & verification: Certification, formal analysis, ...
- High cost

Open World Communication

- No performance guarantees: best efforts
- Standards: Ethernet, TCP/IP, UDP, FTP, Telnet, SSH, ...
- Applications: Multi-media, audio, video, phones, PDAs, internet, web, ...
- Validation & verification: No certification, test, simulation, ...
- Low cost

We see a market requirement to use the same physical network for data flows from both worlds.
The Motivation for Ethernet

- Ethernet hardware is low cost.
- Ethernet is a well-established open-world standard and very scaleable.
- The OSI reference model gives a well-structured classification of concepts that can be built on top of Ethernet.
- Existing tools can be leveraged as cost-efficient diagnosis tools.
- Standard protocols like SNMP can be leveraged for maintenance and configuration.
- Engineers learn about Ethernet at school.

Ethernet means to use well-established technology, but needs real-time and dependability improvements.
Asynchronous Communication

- Transmission Points in Time are not predictable
 → Transmission Latency and Jitter accumulate
 → Number of Hops has a significant impact
- Usually solved by High Wire-Speeds & Low Utilization and/or Priorities
- Problem of ``Indeterminism” remains
Towards Determinism: Synchronization of the distributed local clocks

In an ensemble of clocks, the precision is defined as the maximum distance between any two synchronized non-faulty clocks at any point in real time.

Late Clock Perfect Clock Early Clock
Single-Master Clock Synchronization

Enabler for Synchronous Communication:
- Synchronized Global Time
- Communication Schedule
Synchronized time and a communication schedule allows to realize the time-triggered communication paradigm.

Time-Triggered Operation
Synchronous Communication (TT)

Exactly one order of messages M_i (in contrast to $\text{PERM}(M_i)$ in async. comm)
Deterministic (TT)Ethernet – Traffic Classes

TTEthernet provides several traffic classes in parallel: time-triggered, rate-constrained, and best-effort

Time-Triggered: dispatch messages according to a predefined communication schedule

Rate-Constrained: enforce minimum duration between two frames of the same stream

Best-Effort: standard Ethernet communication paradigm – no temporal guarantees are given

Longest Communication Cycle in this Example: \(\text{LCM}(30, 40) = 120\, \text{msec} \)
Converged Network Example

Dataflow – Integration
- Time-Triggered (TT)
- Rate-Constrained (RC)
- Standard Ethernet (BE)

TTEthernet Switches are non-preemptive store-and-forward switches using priorities
Single-Master Clock Synchronization

Enabler for Synchronous Communication:
- Synchronized Global Time
- Communication Schedule
Fault-tolerant synchronization services are needed for establishing a safe global time base.
Need to cover complex failure modes, e.g. Babbling ECU

Faulty ECU starts to send faulty messages.

Without traffic policing functions, the switch forwards all faulty frames.

At some threshold of faulty frames, the switch starts loosing correct frames from other, independent applications.
NATIVE ETHERNET BECOMES MORE DETERMINISTIC
Native Ethernet becomes more deterministic

IEEE 802.1 is standardizing general architectures for local area networks (LANs) and metropolitan area architectures (MANs). Together with IEEE 802.3 they are the main working groups working standards for Ethernet switches.

Efficient utilization of the communication bandwidth and plug-and-play capabilities are topmost requirements in IEEE 802.1.

With AVB, IEEE 802.1 moved into the area of real-time communication. With TSN, IEEE 802.1 moves into the area of dependable communication.

Upcoming mainstream IT equipment aims to provide real-time and dependable communication features (to a significant higher degree than today).
AVB – Audio/Video Bridging

802.1AS Timing and Synchronization for Time-Sensitive Applications in Bridged Local Area Networks: a protocol and technique to synchronize local clocks in the network to each other.

802.1Qat Stream Reservation Protocol (SRP): a protocol that allows applications to dynamically reserve bandwidth in the network.

802.1Qav Forwarding and Queuing Enhancements for Time-Sensitive Streams: an enhancement over strict priority based forwarding and queueing mechanisms that establishes fairness properties for lower priority traffic in the network.

802.1BA: definition of profiles for AVB systems.

AVB is incorporated in the IEEE 802.1 standards documents since 2011.
Native Ethernet improves its Reliability

IEEE 802.1Q

Physical Topology

Spanning Tree / Virtual LANs

Ring Topology

Redundant “Networks”
TSN – Time-Sensitive Networks

802.1ASbt Timing and Synchronization: Enhancements and Performance Improvements

802.1Qbv Enhancements for Scheduled Traffic: a basic form of time-triggered communication

802.1Qbu Frame Preemption: a mechanism that allows to preempt a frame in transmit to intersperse another frame.

802.1Qca Path Control and Reservation: protocols and mechanisms to set up and manage the redundant communication paths in the network.

802.1CB Frame Replication and Elimination for Reliability: to eliminate redundant copies of frames transmitted over the redundant paths setup in 802.1Qca.

802.1Qcc – enhancements and improvements for stream reservation
Background:
Industrial Need for FT Clock-Sync

Toolbox of Mechanisms

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled Traffic</td>
<td>Ultra low latency, Highly deterministic, QoS, Planning & Flexibility issues, Adequate for most challenging applications.</td>
</tr>
<tr>
<td>Flexible Automotive / Industrial Control Traffic Class</td>
<td>Low latency, QoS, Flexible, Goal Adequate for the majority of control applications. Ongoing discussion in 802.1TSN: BLS? Peristaltic? Urgency based? per ingress shaping?</td>
</tr>
<tr>
<td>Seamless Redundancy</td>
<td>Safety critical control.</td>
</tr>
<tr>
<td>Ingress Policing</td>
<td>Safety critical, Fault containment, Single point of failure.</td>
</tr>
<tr>
<td>Fault Tolerant Clock Sync</td>
<td>Safety critical, Fault containment.</td>
</tr>
<tr>
<td>Adequate support for reservations</td>
<td>Automotive requirements currently under discussion (⇒ AAA2C)</td>
</tr>
</tbody>
</table>

Markus Jochim, General Motors Research
IEEE 802.1 Plenary Session
July 14 - 19, 2013 – Geneva, Switzerland

802.1ASbt Timing and Synchronization: Enhancements and Performance Improvements

802.1Qbv Enhancements for Scheduled Traffic: a basic form of time-triggered communication

802.1Qbu Frame Preemption: a mechanism that allows to preempt a frame in transmit to intersperse another frame.

802.1Qca Path Control and Reservation: protocols and mechanisms to set up and manage the redundant communication paths in the network.

802.1CB Frame Replication and Elimination for Reliability: to eliminate redundant copies of frames transmitted over the redundant paths setup in 802.1Qca.

802.1Qcc – enhancements and improvements for stream reservation
The clock synchronization protocol is a classical master-slave protocol. The master is called the “grandmaster”. When the grandmaster fails, then a new grandmaster is elected. Issues with this mechanism have been reported by industry.
802.1ASbt Clock Synchronization
Proposals for Improvements

SAE AS6802 – Fault-Tolerant Clock Synchronization

TTEthernet Executable Formal Specification

- Using symbolic and bounded model checkers \textit{sal-smc} and \textit{sal-bmc}
- Focus on Interoperation of Synchronization Services (Startup, Restart, Clique Detection, Clique Resolution, abstract Clock Synchronization)

Verification of Lower-Level Synchronization Functions

- Permanence Function (\textit{sal-inf-bmc} + k-induction)
- Compression Function (\textit{sal-inf-bmc} + k-induction)

Formal Verification of Clock Synchronization Algorithm

- First time by means of Model Checking (\textit{sal-inf-bmc} + k-induction)

Re-use of the Formal Models to prove:

- Layered clock-rate correction algorithm (\textit{sal-inf-bmc} + k-induction)
- Layered clock-diagnosis algorithm (\textit{sal-inf-bmc} + k-induction)

Verification and minor corrections of the “Sparse Timebase” Concept

- Distributed computations without explicit coordination (PVS)

Work has mostly been done in the context of the Marie Curie CoMMiCS project
FP7 (FP7/2007-2013) project no. 236701
“Architecture Design is Interface Design” [Kopetz]

Red Interface specifies the behavior of the FT Clock Generator as observed by the connecting bridges of the IEEE 802.1 network.

Internal behavior of the FT Clock Generator may (and most likely will) be much more complex than as observed at the interface.

Blue Interface specifies the behavior of the FT Clock Generator as observed by the FT Clock Consumers.
The red interface is different from the blue interfaces, because there is additional behavior introduced by the IEEE 802.1 network connecting the FT Clock Generator to the FT Clock Consumers.

Both, red and blue, interfaces need to be specified to enable the usage of a fault-tolerant timebase.
SUMMARY AND OUTLOOK
Summary

Our daily life more and more depends on dependable systems and in most cases these systems are *dependable VLSI Systems*. The interconnection and networking of dependable VLSI Systems is a main aspect.

We see a cross-industry trend towards the use of Ethernet in time-critical, safety-related, and also safety-critical systems, for example in the automotive industry.

Plain Ethernet as of today does not provide all functions to allow building distributed dependable VLSI systems.

Hence, Ethernet variants have been developed, for example TTEthernet (standardized as SAE AS6802) that defines a time-triggered paradigm and mixed time-triggered event-triggered paradigm for Ethernet.

Currently, the IEEE is improving native Ethernet with real-time and dependability functions.
Summary

In particular, IEEE 802.3 develops and maintains the Ethernet PHY (e.g., the Reduced Twisted Pair Gigabit Ethernet – RTGBE for automotive use) and MAC standards, IEEE 802.1 develops and maintains bridging (aka switching) standards.

With AVB, the IEEE has moved Ethernet into the real-time applications domain.

With TSN, the IEEE currently moves Ethernet into the hard real-time applications domain and improves Ethernet’s robustness.

With the growing competences in the IEEE standards, products built on these standards increase their market potential.

Well-defined interfaces allow to re-use existing fault-tolerant clock-synchronization protocols.
Outlook: Networks are everywhere

In the European-funded ACROSS project we investigated Network-on-Chip technologies and developed a Time-Triggered Network-on-Chip (TTNoC)

http://www.across-project.eu/
Outlook: Networks are everywhere

In the recently started and European-funded DREAMS project we are taking a holistic view on distributed dependable VLSI system as a system-of-systems. Thereby, we research networks on different levels: on-chip, on-board (e.g., on a PCB), within a box, and “local area” network.

In particular we are interested on emerging benefits that come with the realization of the time-triggered paradigm on all these different hierarchical levels.

http://www.dreams-project.eu/
Recent Book on Time-Triggered Technology

Recent Book on Real-Time Systems